Video Streaming in Distributed Erasure-coded Storage Systems: Stall Duration Analysis

نویسندگان

  • Abubakr O. Al-Abbasi
  • Vaneet Aggarwal
چکیده

The demand for global video has been burgeoning across industries. With the expansion and improvement of videostreaming services, cloud-based video is evolving into a necessary feature of any successful business for reaching internal and external audiences. This paper considers video streaming over distributed systems where the video segments are encoded using an erasure code for better reliability thus being the first work to our best knowledge that considers video streaming over erasure-coded distributed cloud systems. The download time of each coded chunk of each video segment is characterized and ordered statistics over the choice of the erasure-coded chunks is used to obtain the playback time of different video segments. Using the playback times, bounds on the moment generating function on the stall duration is used to bound the mean stall duration. Moment generating function based bounds on the ordered statistics are also used to bound the stall duration tail probability which determines the probability that the stall time is greater than a pre-defined number. These two metrics, mean stall duration and the stall duration tail probability, are important quality of experience (QoE) measures for the end users. Based on these metrics, we formulate an optimization problem to jointly minimize the convex combination of both the QoE metrics averaged over all requests over the placement and access of the video content. The non-convex problem is solved using an efficient iterative algorithm. Numerical results show significant improvement in QoE metrics for cloud-based video as compared to the considered baselines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Non-MDS Erasure Code Scheme for Storage Applications

This paper investigates the use of redundancy and self repairing against node failures indistributed storage systems using a novel non-MDS erasure code. In replication method, accessto one replication node is adequate to reconstruct a lost node, while in MDS erasure codedsystems which are optimal in terms of redundancy-reliability tradeoff, a single node failure isrepaired after recovering the ...

متن کامل

Optimistic Erasure-Coded Distributed Storage

We study erasure-coded atomic register implementations in an asynchronous crash-recovery model. Erasure coding provides a cheap and space-efficient way to tolerate failures in a distributed system. This paper presents ORCAS, Optimistic eRasure-Coded Atomic Storage, which consists of two separate implementations, ORCAS-A and ORCAS-B. In terms of storage space used, ORCAS-A is more efficient in s...

متن کامل

Opening the Chrysalis: On the Real Repair Performance of MSR Codes

Large distributed storage systems use erasure codes to reliably store data. Compared to replication, erasure codes are capable of reducing storage overhead. However, repairing lost data in an erasure coded system requires reading from many storage devices and transferring over the network large amounts of data. Theoretically, Minimum Storage Regenerating (MSR) codes can significantly reduce thi...

متن کامل

On repairing erasure coded data in an active-passive mixed storage network

Citation Oggier, F., & Datta, A. (2015). On repairing erasure coded data in an active-passive mixed storage network. International journal on information and coding theory, 3(1). Abstract: A major change has been recently witnessed in networked distributed storage systems (NDSS), with increased use of erasure codes in lieu of replication for realizing data redundancy. Yet, both the industry and...

متن کامل

Tail Index for a Distributed Storage System with Pareto File Size Distribution

Distributed storage systems often employ erasure codes to achieve high data reliability while attaining space efficiency. Such storage systems are known to be susceptible to long tails in response time. It has been shown that in modern online applications such as Bing, Facebook, and Amazon, the long tail of latency is of particular concern, with 99.9th percentile response times that are orders ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1703.08348  شماره 

صفحات  -

تاریخ انتشار 2017